Solved

The Area of the Surface Generated by Revolving the Curve x(t)=1t2,y=3+2tx ( t ) = 1 - t ^ { 2 } , y = 3 + 2 t

Question 53

Multiple Choice

The area of the surface generated by revolving the curve x(t) =1t2,y=3+2tx ( t ) = 1 - t ^ { 2 } , y = 3 + 2 t with t[0,1]t \in [ 0,1 ] about the x-axis is


A) 4π(2+1) (1+sinh11) 4 \pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
B) π(2+1) (1+sinh11) \pi ( \sqrt { 2 } + 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
C) 2π(21) (1+sinh11) 2 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
D) 4π(21) (1+sinh11) 4 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)
E) 8π(21) (1+sinh11) 8 \pi ( \sqrt { 2 } - 1 ) \left( 1 + \sinh ^ { - 1 } 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions