Solved

The Points of Intersections Of r=2sinθr = 2 \sin \theta And r=2cosθr = 2 \cos \theta

Question 87

Multiple Choice

The points of intersections of r=2sinθr = 2 \sin \theta and r=2cosθr = 2 \cos \theta are


A) (1,π3) ,(1,5π3) \left( 1 , - \frac { \pi } { 3 } \right) , \left( 1 , \frac { 5 \pi } { 3 } \right)
B) (1,π3) ,(1,5π3) ,(0,0) \left( 1 , - \frac { \pi } { 3 } \right) , \left( 1 , \frac { 5 \pi } { 3 } \right) , ( 0,0 )
C) (2,π4) ,(0,0) \left( \sqrt { 2 } , \frac { \pi } { 4 } \right) , ( 0,0 )
D) (1,5π3) ,(0,0) \left( 1 , \frac { 5 \pi } { 3 } \right) , ( 0,0 )
E) (2,π4) \left( \sqrt { 2 } , \frac { \pi } { 4 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions