Solved

The Derivative ddx[2xtt2+1dt]\frac { d } { d x } \left[ \int _ { 2 } ^ { x } \frac { \sqrt { t } } { t ^ { 2 } + 1 } d t \right]

Question 112

Multiple Choice

The derivative ddx[2xtt2+1dt]\frac { d } { d x } \left[ \int _ { 2 } ^ { x } \frac { \sqrt { t } } { t ^ { 2 } + 1 } d t \right] is


A) x2+1x\frac { x ^ { 2 } + 1 } { \sqrt { x } }
B) xx2+1\frac { \sqrt { x } } { x ^ { 2 } + 1 }
C) tt2+1\frac { \sqrt { t } } { t ^ { 2 } + 1 }
D) t2+1t\frac { t ^ { 2 } + 1 } { \sqrt { t } }
E) 29x\frac { 2 } { 9 \sqrt { x } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions