Solved

The Solution to the Differential Equation dydx=sinxcosy\frac { d y } { d x } = \frac { \sin x } { \cos y }

Question 49

Multiple Choice

The solution to the differential equation dydx=sinxcosy\frac { d y } { d x } = \frac { \sin x } { \cos y } satisfying the boundary condition y=π2y = \frac { \pi } { 2 } when x=0x = 0 is


A) siny=cosx\sin y = - \cos x
B) siny=cosx+1\sin y = - \cos x + 1
C) siny=cosx1\sin y = - \cos x - 1
D) siny=cosx2\sin y = - \cos x - 2
E) siny=cosx+2\sin y = - \cos x + 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions