Solved

Let f(x,y,z)=x2+3yzz2f ( x , y , z ) = \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } }

Question 6

Multiple Choice

Let f(x,y,z) =x2+3yzz2f ( x , y , z ) = \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } . Its gradient vector field is


A) f(x,y) =2xi+3zj+(3y2z) k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
B) f(x,y) =2xi+3zj(3y2z) k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
C) f(x,y) =2xi3zj+(3y2z) k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } - 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
D) f(x,y) =2xi3zj(3y2z) k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 \boldsymbol { x } \mathbf { i } - 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
E) f(x,y) =2xi+3zj+(3y+2z) k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y + 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions