Solved

If the Order of Integration Of 01[y2y3f(x,y)dx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { y ^ { 2 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y

Question 127

Multiple Choice

If the order of integration of 01[y2y3f(x,y) dx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { y ^ { 2 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y is switched, the result is


A) 13[x3xf(x,y) dy]dx\int _ { 1 } ^ { 3 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
B) 02[xx2f(x,y) dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 2 } } f ( x , y ) d y \right] d x
C) 02[x3zf(x,y) dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { z } } f ( x , y ) d y \right] d x
D) 01[xx3f(x,y) dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 3 } } f ( x , y ) d y \right] d x
E) 01[x3xf(x,y) dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions