Solved

Let r(t)=(23t)i+4tj(1t)k\mathbf { r } ( t ) = ( 2 - 3 t ) \mathbf { i } + 4 t \mathbf { j } - ( 1 - t ) \mathbf { k }

Question 112

Multiple Choice

Let r(t) =(23t) i+4tj(1t) k\mathbf { r } ( t ) = ( 2 - 3 t ) \mathbf { i } + 4 t \mathbf { j } - ( 1 - t ) \mathbf { k } Then r(0) \mathbf { r } ^ { \prime } ( 0 ) is


A) 3i4jk- 3 \mathbf { i } - 4 \mathbf { j } - \mathbf { k }
B) 3i+4jk3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }
C) 3i+4j+k3 \mathbf { i } + 4 \mathbf { j } + \mathbf { k }
D) 3i4j+k- 3 \mathbf { i } - 4 \mathbf { j } + \mathbf { k }
E) 3i+4j+k- 3 \mathbf { i } + 4 \mathbf { j } + \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions