Solved

The Solution r(t)\mathbf { r } ( t ) To the Differential Equation

Question 102

Multiple Choice

The solution r(t) \mathbf { r } ( t ) to the differential equation r(t) =6t2ietj+etk\mathbf { r } ^ { \prime } ( t ) = 6 t ^ { 2 } \mathbf { i } - e ^ { t } \mathbf { j } + e ^ { - t } \mathbf { k } with the condition r(0) =3i+j2k\mathbf { r } ( 0 ) = 3 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } is


A) (2t3+3) i+(et2) j(et+1) k- \left( 2 t ^ { 3 } + 3 \right) \mathbf { i } + \left( e ^ { t } - 2 \right) \mathbf { j } - \left( e ^ { - t } + 1 \right) \mathbf { k }
B) (2t3+3) i(et2) j+(et+1) k- \left( 2 t ^ { 3 } + 3 \right) \mathbf { i } - \left( e ^ { t } - 2 \right) \mathbf { j } + \left( e ^ { - t } + 1 \right) \mathbf { k }
C) (2t3+3) i+(et2) j(et+1) k\left( 2 t ^ { 3 } + 3 \right) \mathbf { i } + \left( e ^ { t } - 2 \right) \mathbf { j } - \left( e ^ { - t } + 1 \right) \mathbf { k }
D) (2t3+3) i(et2) j+(et+1) k\left( 2 t ^ { 3 } + 3 \right) \mathbf { i } - \left( e ^ { t } - 2 \right) \mathbf { j } + \left( e ^ { - t } + 1 \right) \mathbf { k }
E) (2t3+3) i(et2) j(et+1) k\left( 2 t ^ { 3 } + 3 \right) \mathbf { i } - \left( e ^ { t } - 2 \right) \mathbf { j } - \left( e ^ { - t } + 1 \right) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions