Multiple Choice
select a counterexample for the given invalid argument.
-1. (∃x) (∼Ax ≡ Cx)
2) (∃x) (Ax • Cx)
3) (∀x) (Bx ⊃ Ax) / (∀x) (Cx ⊃ Bx)
A) Counterexample in a domain of 2 members, in which: Aa: True Ba: False Ca: True
Ab: True Bb: True Cb: False
B) Counterexample in a domain of 2 members, in which: Aa: False Ba: False Ca: True
Ab: True Bb: True Cb: False
C) Counterexample in a domain of 2 members, in which: Aa: True Ba: True Ca: True
Ab: True Bb: True Cb: False
D) Counterexample in a domain of 2 members, in which: Aa: True Ba: False Ca: True
Ab: False Bb: True Cb: False
E) Counterexample in a domain of 2 members, in which: Aa: True Ba: False Ca: True
Ab: True Bb: False Cb: True
Correct Answer:

Verified
Correct Answer:
Verified
Q161: determine whether the given argument is valid
Q162: determine whether the given argument is valid
Q163: use:<br>b: Berkeley h: Hume<br>Ax: x is an
Q164: derive the conclusions of each of the
Q165: use:<br>b: Berkeley h: Hume<br>Ax: x is an
Q167: provide a conterexample in a finite domain
Q168: Translate each of the following sentences into
Q169: refer to the following formula: (∃x)[Mx
Q170: refer to the following formula: (∀x)[(Ex
Q171: determine whether the given argument is