Multiple Choice
select a counterexample for the given invalid argument.
-1. (∃x) Sx
2) (∀x) [Sx ⊃ (Tx ⊃ ∼Ux) ]
3) Ua • Ub
4) (∃x) ∼Ux / (∃x) (Sx • ∼Tx)
A) Counterexample in a domain of 3 members, in which:
Sa: True Ta: False Ua: True
Sb: False Tb: False Ub: True
Sc: True Tc: True Uc: False
B) Counterexample in a domain of 3 members, in which:
Sa: False Ta: False Ua: True
Sb: True Tb: True Ub: False
Sc: True Tc: True Uc: False
C) Counterexample in a domain of 3 members, in which:
Sa: True Ta: False Ua: True
Sb: True Tb: True Ub: True
Sc: True Tc: True Uc: False
D) Counterexample in a domain of 3 members, in which:
Sa: False Ta: False Ua: False
Sb: False Tb: True Ub: False
Sc: True Tc: True Uc: False
E) Counterexample in a domain of 3 members, in which:
Sa: False Ta: False Ua: True
Sb: False Tb: True Ub: True
Sc: True Tc: True Uc: False
Correct Answer:

Verified
Correct Answer:
Verified
Q190: select the best translation into predicate
Q191: select a counterexample for the given
Q192: derive the conclusions of each of the
Q193: If some journalists are not respectable, then
Q194: select a counterexample for the given invalid
Q196: refer to the following formula: (∃x)[(Ax
Q197: derive the conclusions of each of the
Q198: Some websites have open comments which
Q199: ∼(∃x)(Px • Qx) ≡ (∀x)(Px ⊃ ∼Qx)<br>-Consider
Q200: 1. (∀x)[(Px <span class="ql-formula" data-value="