Multiple Choice
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
-1. (∀x) (Fx ⊃ Gx)
2) (∃x) Fx / (∀x) (∼Gx ⊃ ∼Ex)
A) Valid
B) Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ea: False
Fb: True Gb: False Eb: True
C) Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ea: True
Fb: True Gb: True Eb: True
D) Invalid. Counterexample in a domain of 2 members, in which:
Fa: False Ga: False Ea: False
Fb: False Gb: True Eb: False
E) Invalid. Counterexample in a domain of 2 members, in which:
Fa: True Ga: False Ea: False
Fb: True Gb: True Eb: True
Correct Answer:

Verified
Correct Answer:
Verified
Q278: consider the following domain, assignment of objects
Q279: refer to the following formula: (∀x)[(Ex
Q280: select a counterexample for the given invalid
Q281: use the given interpretations to translate each
Q282: 1. ∼(∃x)Ax<br>2. (∀x)∼Ax ⊃ ∼(∃x)Bx<br>-Which of the
Q284: refer to the following formula:<br>∼(∀x){(Ix • Jx)
Q285: select the best translation into predicate
Q286: refer to the following formula: (∀x)[(Ex
Q287: determine whether the given argument is valid
Q288: select the best translation into predicate logic.<br>-Some