Multiple Choice
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
-1. (∃x) [Ax • (Bx Cx) ]
2) (∀x) (Bx ⊃ ∼Cx)
3) (∃x) Bx
4) Ca / (∃x) (Ax • Cx)
A) Valid
B) Counterexample in a domain of 2 members, in which:
Aa: False Ba: False Ca: True
Ab: False Bb: False Cb: False
C) Counterexample in a domain of 2 members, in which: Aa: False Ba: False Ca: True
Ab: True Bb: True Cb: False
D) Counterexample in a domain of 2 members, in which: Aa: True Ba: True Ca: True
Ab: True Bb: True Cb: False
E) Counterexample in a domain of 2 members, in which: Aa: True Ba: True Ca: False
Ab: False Bb: True Cb: False
Correct Answer:

Verified
Correct Answer:
Verified
Q120: Translate each of the following sentences into
Q121: select the best translation into predicate
Q122: use:<br>b: Berkeley h: Hume<br>Ax: x is an
Q123: 1. (∀x)(Cx ⊃ Dx)<br>2. (∀x)(Ex ⊃ ∼Dx)<br>-Which
Q124: refer to the following formula: (∃x)[Mx
Q126: provide a conterexample in a finite domain
Q127: 1. (∀x)(Hx ⊃ ∼Jx)<br>2. (∀x)(Ix ⊃ Jx)<br>3.
Q128: use:<br>b: Berkeley h: Hume<br>Ax: x is an
Q129: determine whether the given argument is valid
Q130: 1. (∀x)Ix ⊃ (∀x)Kx<br>2. (∀x)[Jx •