Multiple Choice
determine whether the given formula is a logical truth of M or not. If it is not a logical truth, select a false valuation.
-(∃x) (Ix • Jx) ⊃ [(∀x) Ix ⊃ (∀x) Jx]
A) Logical truth
B) Not a logical truth. False valuation in a domain of 2 members, in which: Ia: False Ja: True
Ib: True Jb: False
C) Not a logical truth. False valuation in a domain of 2 members, in which: Ia: True Ja: True
Ib: True Jb: False
D) Not a logical truth. False valuation in a domain of 2 members, in which: Ia: True Ja: True
Ib: False Jb: False
E) Not a logical truth. False valuation in a domain of 2 members, in which: Ia: True Ja: False
Ib: True Jb: False
Correct Answer:

Verified
Correct Answer:
Verified
Q178: use the given interpretations to translate each
Q179: Translate each of the following sentences into
Q180: refer to the following formula: (∃x)[(Ax
Q181: 1. (∃x)(Ax • Bx) ⊃ (∀x)Dx<br>2. ∼Da<br>-Which
Q182: Things are pleasant if, and only
Q184: 1. (∃x)Qx ⊃ (∀x)(Rx ⊃ Sx)<br>2. (∀x)∼Qx
Q185: select the best translation into predicate
Q186: 1. (∀x)(Jx ⊃ Kx)<br>2. ∼(∀x)Kx<br>-Which of the
Q187: Translate each sentence into predicate logic, using
Q188: 1. (∃x)(Mx • Ox) ⊃ (∃x)Nx<br>2.