Multiple Choice
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?
A) (Ma • Pb) • (Pc Pd) (∃x) Cxa • ~(∃x) Cxd
B) (Pa • Mb) • (Pc Pd) (∃x) Cxd ~(∃x) Cxa
C) (Pa • Pb) • (Pc Pd)
(∃x) Cxd • ∼(∃x) Cxa
D) (Pa • Pb) • (Mc Pd) (∃x) Cxd ~(∃x) Cxa
E) (Pa • Pb) • (Pc Md) (∃x) Cxa • ~(∃x) Cxd
Correct Answer:

Verified
Correct Answer:
Verified
Q26: 1. (∃x)(∃y){Gx • Gy • x≠y
Q27: Translate each sentence into predicate logic, using
Q28: 1. (?x)(?y)(?z)[(Pxy • Pyz) ? Pxz]<br>2. (?x)Pxf(x)
Q29: select the best translation into predicate logic,
Q30: provide a conterexample in a finite domain
Q32: provide a conterexample in a finite domain
Q33: (∃x)(∃y)(Axy • x=y) ⊃ (∃x)Axx<br>-Which of
Q34: 1. (∀x)(∀y)[(Px • Py) ⊃ Pf(x,y)]<br>2. (∃x)[Px
Q35: All philosophers respect each other. Some philosopher
Q36: select the best translation into predicate logic,