Multiple Choice
consider the following domain, assignment of objects in the domain, and assignments sets to predicates.
Domain = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}
a = Mercury b = Jupiter c = Saturn d = Pluto
Mx = {Mercury, Mars}
Px = {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}
Cxy = {
-Given the customary truth tables, which of the following theories is modeled by the above interpretation?
A) (∀x) (Px ⊃ Mx)
~(∃x) Px
(∀x) (∀y) [(Px • Py) ⊃ Cxy]
B) (∀x) (Mx ≡ Px)
~(∀x) Mx (∀x) [(∀y) Cxy ⊃ Py]
C) (∀x) (Mx Px)
~(∃x) Mx
(∀x) [Px ⊃ ~(∀y) (Py ⊃ Cxy) ]
D) (∀x) (~Mx Px)
~(∀x) (Px
(∀x) [Px ⊃ (∀y) (Py ⊃ Cxy) ]
E) (∀x) (Mx ⊃ Px)
∼(∀x) Px
(∀x) [∼Px ⊃ (∀y) (Py ⊃ Cyx) ]
Correct Answer:

Verified
Correct Answer:
Verified
Q238: select the best translation into predicate
Q239: select the best translation into predicate logic,
Q240: 1. (∃x){Ex • Fx • (∀y)[(Ey •
Q241: 1. (∀x)(∀y)f(x,y)=f(y,x)<br>2. (∀x)f(x,o)=o<br>-Which of the following propositions
Q242: select the best translation into predicate logic,
Q244: 1. (∀x){Ax ⊃ [Bx • Bf(x)]}<br>2. ∼Bf(f(e))<br>-Which
Q245: derive the conclusions of each of
Q246: Translate each sentence into predicate logic, using
Q247: Translate each sentence into predicate logic, using
Q248: use:<br>d: Diego <br>s: Sean<br>Dx: x is on