Multiple Choice
determine whether the given argument is valid or invalid. If it is invalid, select a counterexample.
-1. (∀x) (Ax ⊃ Dex)
2) (∃x) (Bx • Dxe)
3) (∀x) (Bx ⊃ Ax) / (∃x) [Ax • (Dxe • Dex) ]
A) Valid
B) Invalid. Counterexample in a domain of one member, in which: Ae: True Be: False Dee: False
C) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: True Daa: True Dea: False
Ae: True Be: True Dae: False Dee: False
D) Invalid. Counterexample in a domain of two members, in which:
Aa: True Ba: False Daa: True Dea: True
Ae: False Be: False Dae: False Dee: True
E) Invalid. Counterexample in a domain of two members, in which: Aa: False Ba: True Daa: False Dea: False
Ae: True Be: True Dae: True Dee: False
Correct Answer:

Verified
Correct Answer:
Verified
Q107: use the following translation key to write
Q108: 1. (∀x)(∀y)(∃z)Sf(x)yz<br>2. (∀x)(∀y)(∀z)[Sxyz ⊃ ∼(Cxyz
Q109: select the best translation into predicate
Q110: use:<br>b: Britain <br>c: Charles <br>e: Elizabeth <br>t:
Q111: select the best translation into predicate logic,
Q113: select the best translation into predicate
Q114: derive the conclusions of each of
Q115: use:<br>b: Britain <br>c: Charles <br>e: Elizabeth <br>t:
Q116: use:<br>d: Diego <br>s: Sean<br>Dx: x is on
Q117: derive the conclusions of each of the