Multiple Choice
select the best translation into predicate logic, using the following translation key:
b: Britain
c: Charles
e: Elizabeth
t: Tescos
Px: x is a person
Qx: x is a Queen of England
Wx: x is a woman
Exy: x is more exalted than y
Ixy: x is in y
Pxy: x shops at y
Sxy: x is a son of y
-Any son of Elizabeth or Charles is more exalted than anyone who is not Charles, Elizabeth, or a son of either.
A) (∀x) [(Px • x≠e • x≠c • Sxe • Sxc) ⊃ (∀y) (Py ⊃ Exy) ]
B) (∀x) {(Sxe Sxc) ⊃ (∀y) [(Py • y≠c • y≠e • ~Sye • ~Syc) ⊃ Exy]}
C) (∀x) (∃y) {(Eyx • Py) ⊃ [(Sxe Sxc) ⊃ (y=e y=c y=x) ]}
D) (∀x) {(∃y) (Eyx • Py) ⊃ [(Sxe Sxc) ⊃ (Ecx • Eex) ]}
E) (∀x) {[(Sxe Sxc) • x≠c • x≠e] ⊃ (∀y) (Py ⊃ Exy) }
Correct Answer:

Verified
Correct Answer:
Verified
Q197: Translate each sentence into predicate logic, using
Q198: select the best translation into predicate logic,
Q199: 1. (∀x){Ax ⊃ [Bx • Bf(x)]}<br>2. ∼Bf(f(e))<br>-Which
Q200: select the best translation into predicate logic,
Q201: (∀x)[Px ⊃ (∃y)Qxy] ⊃ [(∃x)Px ⊃ (∃x)(∃y)Qxy]<br>-Consider
Q203: 1. (∀x)[Ax ⊃ (∃y)(By • Cxy)]<br>2. (∃x)(Ax
Q204: Translate each sentence into predicate logic, using
Q205: derive the conclusions of each of the
Q206: 1. (∃x)(∃y){Gx • Gy • x≠y
Q207: translate each sentence of predicate logic into