Multiple Choice
select the best translation into predicate logic, using the following translation key:
b: Bhavin
c: Chloe
m: Megha
n: Nietzsche
p: Plato
Ax: x is an altruist
Jx: x is joyful
Px: x is a philosopher
Rx: x is Russian
Tx: x is thoughtful
Bxy: x is a brother of y
Mxy: x mocks y
Rxy: x is richer than y
Sxy: x is smarter than y
-The smartest Russian mocks Chloe and Bhavin.
A) (∀x) {(Mxc • Mxb • Rx) ⊃ [(∀y) (Ry • x≠y) ⊃ Sxy]}
B) (∃x) {Rx • (∀y) [(Ry • y≠x) ⊃ Sxy] • Mxc • Mxb}
C) (∀x) (∀y) {[(Rx • Ry ⊃ Sxy] ⊃ (Mxc • Mxb) }
D) (∃x) {Rx • (∀y) [Sxy ⊃ (Ry • x≠y) ] • Mxc • Mxb}
E) (∃x) (∀y) [(Rx • Ry • y≠x • Sxy) ⊃ (Mxc • Mxb) ]
Correct Answer:

Verified
Correct Answer:
Verified
Q290: construct a derivation of each logical truth
Q291: select the best translation into predicate logic,
Q292: 1. (∀x)(∃y)Axy ⊃ (∀x)(∃y)Bxy<br>2. (∃x)(∀y)∼Bxy<br>-Which of the
Q293: select the best translation into predicate logic,
Q294: use:<br>b: Bhavin <br>c: Chloe <br>m: Megha<br>n: Nietzsche
Q296: select the best translation into predicate logic,
Q297: use:<br>b: Bhavin <br>c: Chloe <br>m: Megha<br>n: Nietzsche
Q298: select the best translation into predicate
Q299: derive the conclusions of each of
Q300: provide a conterexample in a finite domain