Solved

Given: WHYt = 2 \leftarrow Standard Errors
R2 = h=(1d2)n1n(var(β^))h = \left( 1 - \frac { d } { 2 } \right) \sqrt { \frac { n } { 1 - n \left( \operatorname { var } \left( \hat { \beta } ^ { } \right) \right) } }

Question 9

Essay

Given: WHYt = 2.00 - 0.15 EXt + 0.70 WHYt-1 + et
(0.10) (0.35) (0.10) \leftarrow standard errors
R2 = .9 DW = 2.10 n = 26
A) What is the short run impact of EX on WHY
B) What is the long run impact of EX on WHY?
C) Does this regression suffer from serial correlation according to Durbin's h-test? Show the 5-step procedure.
h=(1d2)n1n(var(β^))h = \left( 1 - \frac { d } { 2 } \right) \sqrt { \frac { n } { 1 - n \left( \operatorname { var } \left( \hat { \beta } ^ { } \right) \right) } }

Correct Answer:

verifed

Verified

A) -0.15
B) -.15/(1-.70) = -.5
C) 1)Ho: ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions