Solved

Use a Double Integral to Find the Area of R x=0x2ylnxy9x1dydx=9e22\int _ { x = 0 } ^ { x - 2 } \int _ { y - lnx } ^ { y - 9 x } 1 d y d x = \frac { 9 e ^ { 2 } } { 2 }

Question 68

Multiple Choice

Use a double integral to find the area of R. R is the region bounded by y = 9x, y = ln x, y = 0, and y = 1.


A) x=0x2ylnxy9x1dydx=9e22\int _ { x = 0 } ^ { x - 2 } \int _ { y - lnx } ^ { y - 9 x } 1 d y d x = \frac { 9 e ^ { 2 } } { 2 }

B) y=0y1xy9xey1dxdy=e1918\int _ { y = 0 } ^ { y - 1 } \int _ { x - \frac { y } { 9 } } ^ { x - e ^ { y } } 1 d x d y = e - \frac { 19 } { 18 }

C) y0y1x0xey1dxdy=e1\int _ { y - 0 } ^ { y - 1 } \int _ { x - 0 } ^ { x - e ^ { y } } 1 d x d y = e - 1

D) x0x2ylnxy11dydx=e\int _ { x - 0 } ^ { x - 2 } \int _ { y - \ln x } ^ { y - 1 } 1 d y d x = e

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions