Solved

Use a Double Integral to Find the Area of R y=0y=1x=y15x=ey1dxdy=e3130\int _ { y = 0 } ^ { y = 1 } \int _ { x = \frac { y } { 15 } } ^ { x = e ^ { y } } 1 d x d y = e - \frac { 31 } { 30 }

Question 35

Multiple Choice

Use a double integral to find the area of R.R is the region bounded by y = 15x, y = ln x, y = 0, and y = 1.


A) y=0y=1x=y15x=ey1dxdy=e3130\int _ { y = 0 } ^ { y = 1 } \int _ { x = \frac { y } { 15 } } ^ { x = e ^ { y } } 1 d x d y = e - \frac { 31 } { 30 }

B) y=0y=1x=0x=ey1dxdy=e1\int _ { y = 0 } ^ { y = 1 } \int _ { x = 0 } ^ { x =e ^ { y } } 1 d x d y = e - 1

C) x=0x2y=lnxy=11dydx=e\int _ { x= 0 } ^ { x - 2 } \int _ { y = \ln x } ^ { y =1 } 1 d y d x = e

D) x=0x=ey=lnxy=15x1dydx=15e22\int _ { x = 0 } ^ { x= e } \int _ { y = \ln x } ^ { y = 15 x } 1 d y d x = \frac { 15 e ^ { 2 } } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions