Multiple Choice
If A = 3i - 2j + 2k and B = i + 2j + 2k, the unit vector perpendicular to both vectors A and B is
A) -(2/3) i - (1/3) j + (2/3) k.
B) -(2/3) i - (2/3) j - (1/3) k.
C) (2/3) i + (1/3) j + (2/3) k.
D) none of the above.
Correct Answer:

Verified
Correct Answer:
Verified
Related Questions
Q7: Points (0,0,0), (1,1,0), and (0,1,1) belong to
Q8: Consider the vector A = 2i +
Q9: If A = 2i + 3j, and
Q10: If vector A makes an angle
Q11: <span class="ql-formula" data-value="\text { Determine the result
Q13: <span class="ql-formula" data-value="\text { If } \mathbf
Q14: The properties of a scalar include<br>A) magnitude.<br>B)
Q15: <span class="ql-formula" data-value="\text { If } \mathbf
Q16: If A = 2i - 3j +
Q17: If A = 2i - j