Solved

Find an Equation for the Line Tangent to the Given r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )

Question 75

Multiple Choice

Find an equation for the line tangent to the given curve at the specified point. r(t) =et,cos(t) ,t,(1,1,0) \vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )


A) T(t) =1,1,0+t1,0,1\vec { T } ( t ) = \langle 1,1,0 \rangle + t \langle 1,0,1 \rangle
B) T(t) =0,e2,1+t0,e2,1\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle
C) T(t) =0,e2,1+t1,2e2,π2\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 1,2 e ^ { 2 } , \frac { \pi } { 2 } \right\rangle
D) T(t) =1,2e2,0+t0,e2,1\vec { T } ( t ) = \left\langle 1,2 e ^ { 2 } , 0 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions