Solved

Find the Unit Tangent For r(t)=cos(3t),sin(3t),et\vec { r } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle

Question 23

Multiple Choice

Find the unit tangent for r(t) =cos(3t) ,sin(3t) ,et\vec { r } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle


A) T(t) =3sin(3t) ,3cos(3t) ,et9+e2t\vec { T } ( t ) = \frac { \left\langle - 3 \sin ( 3 t ) , 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
B) T(t) =cos(3t) ,sin(3t) ,et9+e2t\vec { T } ( t ) = \frac { \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
C) T(t) =3sin(3t) ,3cos(3t) ,et9+e2t\vec { T } ( t ) = \frac { \left\langle 3 \sin ( 3 t ) , - 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
D) T(t) =cos(3t) ,sin(3t) ,et\vec { T } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions