Solved

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v }

Question 63

Multiple Choice

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,1,1\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,1 , - 1 \rangle


A) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=2,1,1\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 2,1,1 \rangle orthogonal component is 0,0,0\langle 0,0,0 \rangle
B) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,1,1\langle - 1,1 , - 1 \rangle
C) compuv=1\operatorname { comp } _ { \vec { u } } \vec { v } = 1 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 2,1,1\langle 2,1,1 \rangle
D) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,2,1\langle 1,2,1 \rangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions