Solved

Determine Whether or Not the Function f(x)=cos2xf ( x ) = \cos 2 x

Question 9

Multiple Choice

Determine whether or not the function f(x) =cos2xf ( x ) = \cos 2 x satisfies the hypothesis of Rolle's Theorem on the interval [π4,3π4]\left[ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right] If it does, find the exact values of all values of c(π4,3π4) c \in \left( \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right) that satisfy the conclusion of Rolle's Theorem.


A) No
B) Yes, c=π2,c=3π2c = \frac { \pi } { 2 } , c = \frac { 3 \pi } { 2 }
C) Yes, c=π2,c=π2c = - \frac { \pi } { 2 } , c = \frac { \pi } { 2 }
D) Yes, c=π2c = \frac { \pi } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions