Solved

Find the Derivative Of f(x)=(x2x1)xf ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x }

Question 82

Multiple Choice

Find the derivative of f(x) =(x2x1) xf ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x }


A) f(x) =(x2x1) x(2lnx+1ln(x1) ) f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } ( 2 \ln x + 1 - \ln ( x - 1 ) )
B) f(x) =(x2x1) x(2lnx+2ln(x1) xx1) f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x + 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
C) f(x) =(x2x1) x(2lnxln(x1) xx1) f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
D) f(x) =(x2x1) x(2ln(x1) xx1) f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions