Solved

Given f(x)=2x+1f ( x ) = 2 x + 1 And h(x)=2x2+4x+1h ( x ) = 2 x ^ { 2 } + 4 x + 1

Question 22

Multiple Choice

Given f(x) =2x+1f ( x ) = 2 x + 1 and h(x) =2x2+4x+1h ( x ) = 2 x ^ { 2 } + 4 x + 1 , find a function gg such that f(g(x) ) =h(x) f ( g ( x ) ) = h ( x )


A) g(x) =(x2+1) 2g ( x ) = \left( x ^ { 2 } + 1 \right) ^ { 2 }
B) g(x) =x2+2g ( x ) = x ^ { 2 } + 2
C) g(x) =x2+4xg ( x ) = x ^ { 2 } + 4 x
D) g(x) =x2+2xg ( x ) = x ^ { 2 } + 2 x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions