Multiple Choice
Let the differential 2-form = (3
+ 2xy + 6
) dx
dy be defined in a star-like domain
.
(a) Is 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 closed?
(b) Is 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 exact on D? If so, find a differential 1-form 11ee7bc9_84dc_f4fe_ae82_1b41b7d4ea2f_TB9661_11 such that 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 = d11ee7bc9_84dc_f4fe_ae82_1b41b7d4ea2f_TB9661_11 .
A) 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 is closed but not exact
B) 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 is both closed and exact, 11ee7bc9_84dc_f4fe_ae82_1b41b7d4ea2f_TB9661_11 = - (x 11ee77e1_7790_822f_a0f8_cfcabba15689_TB9661_11 + 2 11ee77e1_7790_8230_a0f8_5faaf7819df3_TB9661_11 ) dx + 11ee77e1_7790_8231_a0f8_abc3d5eaae96_TB9661_11 dy
C) 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 is neither closed nor exact
D) 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 is both closed and exact, 11ee7bc9_84dc_f4fe_ae82_1b41b7d4ea2f_TB9661_11 = (x 11ee77e1_7790_8232_a0f8_55a6027c73fd_TB9661_11 + 2 11ee77e1_7790_8233_a0f8_0b4d11046402_TB9661_11 ) dx + 11ee77e1_7790_a944_a0f8_8f25cd10593b_TB9661_11 dy
E) 11ee7bc9_5715_4a9c_ae82_31f72d013c41_TB9661_11 is both closed and exact, 11ee7bc9_84dc_f4fe_ae82_1b41b7d4ea2f_TB9661_11 = 11ee77e1_7790_a945_a0f8_0708c0d434ad_TB9661_11 dx - (x 11ee77e1_7790_a946_a0f8_8f0c49d6bc1a_TB9661_11 + 2 11ee77e1_7790_a947_a0f8_3f7673b68c8f_TB9661_11 ) dy
Correct Answer:

Verified
Correct Answer:
Verified
Q37: Find all values of the real
Q38: Integrate the differential (n -1)-form
Q39: One way to describe a smooth k-manifold
Q40: Prove that every smooth exterior derivative is
Q41: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt=" Let
Q43: Find <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Find d
Q44: Let M be the smooth 2-manifold
Q45: Which of the following is an antiderivative
Q46: Let F(x, y) and G(x, y) be
Q47: Find the dimension of <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Find