Solved

Find All Values of the Nonzero Constant Real Numbers A  irrotational \textbf{ irrotational }

Question 35

Multiple Choice

Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y ) cosh (c z) i + b cos (  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y) cosh (c z) j + c sin(  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 x + 2y) sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .


A) a = -  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c = 3
B) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = 2, c = 2
C) a = -  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 ± 2
D) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = 2, c = ± 3
E) a =  Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y ) cosh (c z)  i + b cos (   x + 2y) cosh (c z)  j + c sin(   x + 2y) sinh(c z)  k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  . A)  a = -   , b = -2, c = 3 B)  a =   , b = 2, c = 2 C)  a = -   , b = -2, c =   ± 2 D)  a =   , b = 2, c = ± 3 E)  a =   , b = -2, c = 9 , b = -2, c = 9

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions