menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus A Complete Course
  4. Exam
    Exam 7: Techniques of Integration
  5. Question
    Let I<sub>n</sub> = Dx\(\le\) 3and Use It to Evaluate I<sub>5</sub> = Dx
Solved

Let In = Dx ≤\le≤ 3and Use It to Evaluate I5 = Dx

Question 98

Question 98

Multiple Choice

Let In =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  dx. Find a reduction formula for In in terms of In-2 valid for n ≤\le≤ 3and use it to evaluate I5 =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  dx.


A)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
B)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
C)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
D)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
E)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q93: Integrate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Integrate dx.

Q94: If g(x) is a polynomial of degree

Q95: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate the

Q96: Determine the exact error involved in approximating

Q97: Use Simpson's Rule with 8 subintervals to

Q99: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate the

Q100: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate the

Q101: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="

Q102: Evaluate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate A)

Q103: Calculate the Trapezoid Rule approximations T<sub>2</sub>, T<sub>4</sub>,

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines