Multiple Choice
Find the maximum value of on [0, 1], where f(x) =
, and use it to obtain an upper bound for the absolute value of the error involved if the Trapezoid Rule approximation based on n equal subintervals is used to approximate I =
dx. How large should n be chosen to ensure that the error does not exceed
?
A) 2 on [0, 1],
, n = 10 will do
B) 1 on [0, 1],
, n = 8 will do
C) 1 on [0, 1],
, n = 8 will do
D) 2 on [0, 1],
, n = 9 will do
E) 2 on [0, 1],
, n = 15 will do
Correct Answer:

Verified
Correct Answer:
Verified
Q62: Evaluate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate dt
Q63: Integrate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Integrate .
Q64: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt=" converges to -
Q65: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate the
Q66: Evaluate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate dx.
Q68: Suppose that 0 <span class="ql-formula"
Q69: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Evaluate the
Q70: Evaluate the Midpoint Rule approximation <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg"
Q71: Evaluate the integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="
Q72: Suppose that the six subintervals Simpson's Rule