Solved

Use Simpson's Rule with 4 and 8 Subintervals to Approximate \approx

Question 37

Multiple Choice

Use Simpson's Rule with 4 and 8 subintervals to approximate I =  Use Simpson's Rule with 4 and 8 subintervals to approximate I =   Give your answers to 5 decimal places. What are the actual errors in these approximations? A)  S<sub>4</sub>  \approx  2.00466, S<sub>8</sub>  \approx  2.00029, I - S<sub>4</sub>  \approx  -0.00466, I - S<sub>8</sub>  \approx  -0.00029 B)  S<sub>4</sub>  \approx  2.00456, S<sub>8</sub>  \approx  2.00027, I - S<sub>4</sub>  \approx  -0.00456, I - S<sub>8</sub>  \approx  -0.00027 C)  S<sub>4</sub>  \approx  2.00446, S<sub>8</sub>  \approx  2.00024, I - S<sub>4</sub>  \approx  -0.00446, I - S<sub>8</sub>  \approx  -0.00024 D)  S<sub>4</sub>  \approx  2.00436, S<sub>8</sub> \approx  2.00020, I - S<sub>4</sub>  \approx  -0.00436, I - S<sub>8</sub>  \approx  -0.00020 E)  S<sub>4</sub>  \approx  2.00476, S<sub>8</sub>  \approx  2.00031, I - S<sub>4</sub>  \approx  -0.00476, I - S<sub>8</sub>  \approx  -0.00031 Give your answers to 5 decimal places. What are the actual errors in these approximations?


A) S4 \approx 2.00466, S8 \approx 2.00029, I - S4 \approx -0.00466, I - S8 \approx -0.00029
B) S4 \approx 2.00456, S8 \approx 2.00027, I - S4 \approx -0.00456, I - S8 \approx -0.00027
C) S4 \approx 2.00446, S8 \approx 2.00024, I - S4 \approx -0.00446, I - S8 \approx -0.00024
D) S4 \approx 2.00436, S8 \approx 2.00020, I - S4 \approx -0.00436, I - S8 \approx -0.00020
E) S4 \approx 2.00476, S8 \approx 2.00031, I - S4 \approx -0.00476, I - S8 \approx -0.00031

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions