Multiple Choice
Using the second derivative test, classify the critical points of the function f(t) = t3 - t2 - t + 2 and locate any points of inflection.
A) local max at t = -1/3, local min at t = 1, inflection at t = 1/3
B) local min at t = -1/3, local max at t = 1, inflection at t = 1/3
C) local max at t = 1/3, local min at t = -1, inflection at t = -1/3
D) local min at t = 1/3, local max at t = -1, inflection at t = -1/3
E) none of the above
Correct Answer:

Verified
Correct Answer:
Verified
Q1: Find the local extrema and inflection points
Q2: At what value(s) of x does the
Q4: A function f(x) satisfies
Q5: A plane flying horizontally at an altitude
Q6: At what values of t does the
Q7: Find a suitable linearization for sin(x°) useful
Q8: Let f(x) = 18 <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Let
Q9: For what value of k will f(x)
Q10: A hemispherical bowl of radius 10 inches
Q11: A closed rectangular container with a square