menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Early
  4. Exam
    Exam 1: Functions
  5. Question
    Find the Inverse of the Function\(\ge\) 0 A)f<sup>-1</sup>(x) = X + 4, X
Solved

Find the Inverse of the Function ≥\ge≥ 0
A)f-1(x) = X + 4, X

Question 79

Question 79

Multiple Choice

Find the inverse of the function.
-f(x) =  Find the inverse of the function. -f(x)  =   - 4, x  \ge  0 A) f<sup>-1</sup>(x)  = x + 4, x  \ge  4 B) f<sup>-1</sup>(x)  =   C)  f<sup>-1</sup>(x)  = -   , x  \ge  4 D) f<sup>-1</sup>(x)  =   , x  \ge  4    - 4, x ≥\ge≥ 0


A) f-1(x) = x + 4, x ≥\ge≥ 4
B) f-1(x) =  Find the inverse of the function. -f(x)  =   - 4, x  \ge  0 A) f<sup>-1</sup>(x)  = x + 4, x  \ge  4 B) f<sup>-1</sup>(x)  =   C)  f<sup>-1</sup>(x)  = -   , x  \ge  4 D) f<sup>-1</sup>(x)  =   , x  \ge  4
C) f-1(x) = -  Find the inverse of the function. -f(x)  =   - 4, x  \ge  0 A) f<sup>-1</sup>(x)  = x + 4, x  \ge  4 B) f<sup>-1</sup>(x)  =   C)  f<sup>-1</sup>(x)  = -   , x  \ge  4 D) f<sup>-1</sup>(x)  =   , x  \ge  4    , x ≥\ge≥ 4
D) f-1(x) =  Find the inverse of the function. -f(x)  =   - 4, x  \ge  0 A) f<sup>-1</sup>(x)  = x + 4, x  \ge  4 B) f<sup>-1</sup>(x)  =   C)  f<sup>-1</sup>(x)  = -   , x  \ge  4 D) f<sup>-1</sup>(x)  =   , x  \ge  4    , x ≥\ge≥ 4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q74: Find a formula for the function graphed.<br>-<img

Q75: Determine an appropriate viewing window for the

Q76: Solve for the angle θ, where

Q77: Find the domain and range of

Q78: State the period of the function

Q80: Determine whether or not the graph is

Q81: Choose the graph that matches the function.<br>-f(x)

Q82: Find the domain and graph the

Q83: Simplify the difference quotients <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Simplify

Q84: Is the function graphed one-to-one?<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Is

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines