Solved

Identify the Quadric Surface by Name

Question 56

Multiple Choice

Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist.
--9 Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  - 9 Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  + Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  = 9


A) Ellipsoid; xy-trace: -9x2 - 9y2 = 9 (circle) ; xz-trace: z2 - 9 x2 = 9 (ellipse) ; yz-trace: z2 - 9 y2 = 9 (ellipse)

B) Hyperboloid of two sheets; xy-trace: -9x2 - 9y2 = 9(circle) ; xz-trace: z2 - 9 x2 = 9 (hyperbola) ; yz-trace: z2 - 9 y2 = 9 (hyperbola)

C) Hyperboloid of two sheets; xz-trace: z2 - 9 x2 = 9 (hyperbola) ; yz-trace: z2 - 9 y2 = 9(hyperbola)

D) Hyperboloid of one sheet; xy-trace: -9x2 - 9y2 = 9 (circle) ; xz-trace: z2 - 9 y2 = 9 (hyperbola) ; yz-trace: z2 - 9y2 = 9 (hyperbola)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions