Solved

Suppose ? Is a Positive Real Parameter (0,2α) \left(0, \frac{2}{\alpha}\right)

Question 28

Multiple Choice

Suppose ? is a positive real parameter. Consider this competing species model:
 Suppose ? is a positive real parameter. Consider this competing species model:   Which of these are critical points for this system? Select all that apply. A)   \left(0, \frac{2}{\alpha}\right)    B)   (0,0)    C)   \left(\frac{2}{\alpha}, 0\right)    D)    \left(0, \frac{\alpha}{2}\right)    E)   \left(\frac{2}{3}, 0\right)    F)   \left(\frac{3}{2}, 0\right)    G)   \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)    H)   \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)    I)   \left(2-\alpha, \frac{3 \alpha+8}{2}\right)
Which of these are critical points for this system? Select all that apply.


A) (0,2α) \left(0, \frac{2}{\alpha}\right)
B) (0,0) (0,0)
C) (2α,0) \left(\frac{2}{\alpha}, 0\right)
D) (0,α2) \left(0, \frac{\alpha}{2}\right)
E) (23,0) \left(\frac{2}{3}, 0\right)
F) (32,0) \left(\frac{3}{2}, 0\right)
G) (α2,3α82) \left(\alpha-2, \frac{-3 \alpha-8}{2}\right)
H) (α+2,3α82) \left(-\alpha+2, \frac{-3 \alpha-8}{2}\right)
I) (2α,3α+82) \left(2-\alpha, \frac{3 \alpha+8}{2}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions