Solved

Compute the Inverse Laplace Transform of F(s) = e2t[cos(11t)+411sin(11t)] e^{-2 t}\left[\cos (\sqrt{11} t)+\frac{4}{\sqrt{11}} \sin (\sqrt{11} t)\right]

Question 21

Multiple Choice

Compute the inverse Laplace transform of F(s) =  Compute the inverse Laplace transform of F(s)  =   . A)    e^{-2 t}\left[\cos (\sqrt{11} t) +\frac{4}{\sqrt{11}} \sin (\sqrt{11} t) \right]   B)    e^{2 t}\left(\cos (\sqrt{11} t) +\frac{4}{\sqrt{11}} \sin (\sqrt{11} t) \right)    C)    e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t) +\sin (\sqrt{11} t) \right)    D)    e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t) +\sin (\sqrt{11} t) \right)  .


A) e2t[cos(11t) +411sin(11t) ] e^{-2 t}\left[\cos (\sqrt{11} t) +\frac{4}{\sqrt{11}} \sin (\sqrt{11} t) \right]
B) e2t(cos(11t) +411sin(11t) ) e^{2 t}\left(\cos (\sqrt{11} t) +\frac{4}{\sqrt{11}} \sin (\sqrt{11} t) \right)
C) e2t(411cos(11t) +sin(11t) ) e^{2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t) +\sin (\sqrt{11} t) \right)
D) e2t(411cos(11t) +sin(11t) ) e^{-2 t}\left(\frac{4}{\sqrt{11}} \cos (\sqrt{11} t) +\sin (\sqrt{11} t) \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions