menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Elementary Differential Equations
  4. Exam
    Exam 6: The Laplace Transform
  5. Question
    Compute the Inverse Laplace Transform of\( e^{-4 t} t^{4} \)
Solved

Compute the Inverse Laplace Transform of e−4tt4 e^{-4 t} t^{4} e−4tt4

Question 47

Question 47

Multiple Choice

Compute the inverse Laplace transform of  Compute the inverse Laplace transform of   . A)    e^{-4 t} t^{4}   B)    e^{-4 t} t^{3}   C)    \frac{e^{-4 t} t^{3}}{3 !}   D)    \frac{e^{4 t} t^{4}}{4 !}   E)    \frac{e^{4 t}(t+4) ^{3}}{3 !} .


A) e−4tt4 e^{-4 t} t^{4} e−4tt4
B) e−4tt3 e^{-4 t} t^{3} e−4tt3
C) e−4tt33! \frac{e^{-4 t} t^{3}}{3 !} 3!e−4tt3​
D) e4tt44! \frac{e^{4 t} t^{4}}{4 !} 4!e4tt4​
E) e4t(t+4) 33! \frac{e^{4 t}(t+4) ^{3}}{3 !} 3!e4t(t+4) 3​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q42: Compute the Laplace transform of f:<br>F(t)

Q43: Find the Laplace transform of the

Q44: Consider the function<br><img src="https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/.jpg" alt=" Consider

Q45: Compute the Laplace transform of f(t) =

Q46: Consider the function<br><img src="https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/.jpg" alt=" Consider

Q48: Which of these statements is true?<br>A)

Q49: Compute the inverse Laplace transform of

Q50: Consider the function<br><img src="https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/.jpg" alt=" Consider

Q51: Consider the following function:<br>F(t) = <img

Q52: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/.jpg" alt=" _. Here, δ

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines