Solved

Find the Laplace Transform of the Solution X(t) of the Following

Question 11

Multiple Choice

Find the Laplace transform of the solution x(t) of the following initial value problem:
 Find the Laplace transform of the solution x(t)  of the following initial value problem:   Wher   A)    \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)    B)    \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)    C)    \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right)  s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)    D)    \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right)  s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
Wher
 Find the Laplace transform of the solution x(t)  of the following initial value problem:   Wher   A)    \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)    B)    \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)    C)    \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right)  s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)    D)    \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right)  s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)


A) 1s2+7s+5(5s+40+(e8πs1) s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
B) 1s2+7s+5(5s40+(e8πs1) s2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(e^{-8 \pi s}-1\right) }{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)
C) 1s2+7s+5(5s+40+(1e8πs) ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(5 s+40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-\mathrm{g} \pi s}}{s^{2}}\right)
D) 1s2+7s+5(5s40+(1e8πs) ss2+1+egπss2) \frac{1}{s^{2}+7 s+5}\left(-5 s-40+\frac{\left(1-e^{-8 \pi s}\right) s}{s^{2}+1}+\frac{e^{-g \pi s}}{s^{2}}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions