Solved

Consider the Second-Order Differential Equation y(x)=a0+a0(xlnx+n=1(1)nxn+1nn!) y(x)=a_{0}+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{n \cdot n !}\right)

Question 60

Multiple Choice

Consider the second-order differential equation  Consider the second-order differential equation   . Using the method of Frobenius, which of these is the general solution of this differential equation? Assume   are arbitrary real constants. A)    y(x) =a_{0}+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    B)    y(x) =a_{0} x+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    C)    y(x) =a_{0}+a^{*}{ }_{0}^{x}\left[\ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    D)    y(x) =a_{0}+a_{0}^{*} \ln x\left(1+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)  .
Using the method of Frobenius, which of these is the general solution of this differential equation? Assume  Consider the second-order differential equation   . Using the method of Frobenius, which of these is the general solution of this differential equation? Assume   are arbitrary real constants. A)    y(x) =a_{0}+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    B)    y(x) =a_{0} x+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    C)    y(x) =a_{0}+a^{*}{ }_{0}^{x}\left[\ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)    D)    y(x) =a_{0}+a_{0}^{*} \ln x\left(1+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)  are arbitrary real constants.


A) y(x) =a0+a0(xlnx+n=1(1) nxn+1nn!) y(x) =a_{0}+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)
B) y(x) =a0x+a0(xlnx+n=1(1) nxn+1nn!) y(x) =a_{0} x+a_{0}^{*}\left(x \ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)
C) y(x) =a0+a0x[lnx+n=1(1) nxn+1nn!) y(x) =a_{0}+a^{*}{ }_{0}^{x}\left[\ln x+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)
D) y(x) =a0+a0lnx(1+n=1(1) nxn+1nn!) y(x) =a_{0}+a_{0}^{*} \ln x\left(1+\sum_{n=1}^{\infty} \frac{(-1) ^{n} x^{n+1}}{n \cdot n !}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions