Solved

Use the Method of Variation of Parameters to Solve the Following

Question 4

Multiple Choice

Use the method of variation of parameters to solve the following third-order nonhomogeneous differential equation:
 Use the method of variation of parameters to solve the following third-order nonhomogeneous differential equation:   A)    y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}-\frac{2}{5} t^{\frac{5}{2}} e^{t}   B)    y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}+\frac{8}{105} t^{\frac{7}{2}} e^{t}   C)    y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}+\left(\frac{1}{7} t^{\frac{7}{2}}-\frac{2}{5} t^{\frac{7}{2}}\right)  e^{t}   D)    y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+\frac{8}{105} t^{\frac{7}{2}} e^{t}   E)    y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+\left(\frac{1}{7} t^{\frac{7}{2}}-\frac{2}{5} t^{\frac{7}{2}}\right)  e^{t}   F)    y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}-\frac{2}{5} t^{\frac{5}{2}} e^{t}


A) y=C1et+C2tet+C3t2et25t52et y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}-\frac{2}{5} t^{\frac{5}{2}} e^{t}
B) y=C1et+C2tet+C3t2et+8105t72et y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}+\frac{8}{105} t^{\frac{7}{2}} e^{t}
C) y=C1et+C2tet+C3t2et+(17t7225t72) et y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} t^{2} e^{t}+\left(\frac{1}{7} t^{\frac{7}{2}}-\frac{2}{5} t^{\frac{7}{2}}\right) e^{t}
D) y=C1et+C2tet+C3t2et+8105t72et y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+\frac{8}{105} t^{\frac{7}{2}} e^{t}
E) y=C1et+C2tet+C3t2et+(17t7225t72) et y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+\left(\frac{1}{7} t^{\frac{7}{2}}-\frac{2}{5} t^{\frac{7}{2}}\right) e^{t}
F) y=C1et+C2tet+C3t2et25t52et y=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}-\frac{2}{5} t^{\frac{5}{2}} e^{t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions