Solved

What Is the General Solution of the Third-Order Homogeneous Cauchy y=C1x+C2xlnx+C3x2lnx y=C_{1} x+C_{2} x \ln x+C_{3} x^{2} \ln x

Question 29

Multiple Choice

What is the general solution of the third-order homogeneous Cauchy Euler differential equation  What is the general solution of the third-order homogeneous Cauchy Euler differential equation    A)    y=C_{1} x+C_{2} x \ln x+C_{3} x^{2} \ln x   B)    y=C_{1} x+C_{2} x \ln x+C_{3} x(\ln x) ^{2}   C)    y=C_{1} x^{-1}+C_{2} x^{-1} \ln \mathrm{x}+C_{3} x^{-1}(\ln x) ^{2}   D)    y=C_{1} x^{-1}+C_{2} \ln \left(x^{-1}\right) +C_{3}\left(\ln \left(x^{-1}\right) \right) ^{2}


A) y=C1x+C2xlnx+C3x2lnx y=C_{1} x+C_{2} x \ln x+C_{3} x^{2} \ln x
B) y=C1x+C2xlnx+C3x(lnx) 2 y=C_{1} x+C_{2} x \ln x+C_{3} x(\ln x) ^{2}
C) y=C1x1+C2x1lnx+C3x1(lnx) 2 y=C_{1} x^{-1}+C_{2} x^{-1} \ln \mathrm{x}+C_{3} x^{-1}(\ln x) ^{2}
D) y=C1x1+C2ln(x1) +C3(ln(x1) ) 2 y=C_{1} x^{-1}+C_{2} \ln \left(x^{-1}\right) +C_{3}\left(\ln \left(x^{-1}\right) \right) ^{2}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions