Solved

Which of the Following Is the General Solution of the Homogeneous

Question 41

Multiple Choice

Which of the following is the general solution of the homogeneous second-order differential equation  Which of the following is the general solution of the homogeneous second-order differential equation    arbitrary real constants. A)    y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}   B)    y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}   C)    y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}   D)    y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}   E)    y=C_{1} t e^{-\frac{3}{4} t}+C_{2}
arbitrary real constants.


A) y=C1e34t+C2te34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}
B) y=C1e34t+C2e34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}
C) y=C1e34t+C2te34t y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}
D) y=C1e43t+C2te43t y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}
E) y=C1te34t+C2 y=C_{1} t e^{-\frac{3}{4} t}+C_{2}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions