Solved

Consider This Second-Order Nonhomogeneous Differential Equation:

Which of These Y(t)=At+Bt4 Y(t)=A t+B t^{4}

Question 57

Multiple Choice

Consider this second-order nonhomogeneous differential equation:
 Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t)  of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants. A)    Y(t) =A t+B t^{4}   B)    Y(t) =\left(A t+B t^{4}\right)  e^{4 t} \sin (2 t) +\left(C t+D t^{4}\right)  e^{4 t} \cos (2 t)    C)    Y(t) =A t^{4}+B t^{3}+C t^{2}+D t+E   D)    Y(t) =\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right)  e^{4 t}(\sin (2 t) +\cos (2 t) )    E)    Y(t) =\left(A t^{4}+B t\right)  e^{2 t} \sin (4 t) +\left(C t^{4}+D t\right)  e^{2 t} \cos (4 t)    F)    Y(t) =\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right)  e^{2 t}(\sin (4 t) +\cos (4 t) )
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.


A) Y(t) =At+Bt4 Y(t) =A t+B t^{4}
B) Y(t) =(At+Bt4) e4tsin(2t) +(Ct+Dt4) e4tcos(2t) Y(t) =\left(A t+B t^{4}\right) e^{4 t} \sin (2 t) +\left(C t+D t^{4}\right) e^{4 t} \cos (2 t)
C) Y(t) =At4+Bt3+Ct2+Dt+E Y(t) =A t^{4}+B t^{3}+C t^{2}+D t+E
D) Y(t) =(At4+Bt3+Ct2+Dt+E) e4t(sin(2t) +cos(2t) ) Y(t) =\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{4 t}(\sin (2 t) +\cos (2 t) )
E) Y(t) =(At4+Bt) e2tsin(4t) +(Ct4+Dt) e2tcos(4t) Y(t) =\left(A t^{4}+B t\right) e^{2 t} \sin (4 t) +\left(C t^{4}+D t\right) e^{2 t} \cos (4 t)
F) Y(t) =(At4+Bt3+Ct2+Dt+E) e2t(sin(4t) +cos(4t) ) Y(t) =\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}(\sin (4 t) +\cos (4 t) )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions