Solved

Which of These Is the General Solution of the Second-Order y(t)=C1e4t+C2et4+Ae4t+Be4t+Ce5t y(t)=C_{1} e^{-4 t}+C_{2} e^{\frac{t}{4}}+A e^{-4 t}+B e^{4 t}+C e^{5 t}

Question 110

Multiple Choice

Which of these is the general solution of the second-order nonhomogeneous differential equation  Which of these is the general solution of the second-order nonhomogeneous differential equation   and all capital letters are arbitrary real constants. A)    y(t) =C_{1} e^{-4 t}+C_{2} e^{\frac{t}{4}}+A e^{-4 t}+B e^{4 t}+C e^{5 t}   B)    y(t) =C_{1} e^{-4 t}+C_{2} e^{\frac{t}{4}}+(A t+B)  e^{-4 t}+C e^{4 t}+\mathrm{D} e^{5 t}   C)    y(t) =C_{1} e^{4 t}+C_{2} e^{-\frac{t}{4}}+A e^{-4 t}+B e^{4 t}+C e^{5 t}   D)    y(t) =C_{1} e^{4 t}+C_{2} e^{-\frac{t}{4}}+(A t+B)  e^{-4 t}+C e^{4 t}+\mathrm{D} e^{5 t} and all capital letters are arbitrary real constants.


A) y(t) =C1e4t+C2et4+Ae4t+Be4t+Ce5t y(t) =C_{1} e^{-4 t}+C_{2} e^{\frac{t}{4}}+A e^{-4 t}+B e^{4 t}+C e^{5 t}
B) y(t) =C1e4t+C2et4+(At+B) e4t+Ce4t+De5t y(t) =C_{1} e^{-4 t}+C_{2} e^{\frac{t}{4}}+(A t+B) e^{-4 t}+C e^{4 t}+\mathrm{D} e^{5 t}
C) y(t) =C1e4t+C2et4+Ae4t+Be4t+Ce5t y(t) =C_{1} e^{4 t}+C_{2} e^{-\frac{t}{4}}+A e^{-4 t}+B e^{4 t}+C e^{5 t}
D) y(t) =C1e4t+C2et4+(At+B) e4t+Ce4t+De5t y(t) =C_{1} e^{4 t}+C_{2} e^{-\frac{t}{4}}+(A t+B) e^{-4 t}+C e^{4 t}+\mathrm{D} e^{5 t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions