Solved

Which of These Is the General Solution of the Second-Order

Question 26

Multiple Choice

Which of these is the general solution of the second-order nonhomogeneous differential equation  Which of these is the general solution of the second-order nonhomogeneous differential equation    and all capital letters are arbitrary real constants. A)    y(t) =C_{1} \cos \left(\frac{3}{1} t\right) +C_{2}\left(\frac{3}{1} t\right) +A \cos \left(\frac{3}{1} t\right) +(B t+C)  \sin \left(\frac{3}{1} t\right)    B)    y(t) =C_{1} \cos \left(\frac{3}{1} t\right) +C_{2}\left(\frac{3}{1} t\right) +(A t+B)  \cos \left(\frac{3}{1} t\right) +\left(C t^{2}+D t+E\right)  \sin \left(\frac{3}{1} t\right)    C)    y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +(A t+B)  \cos \left(\frac{1}{3} t\right) +\left(B t^{2}+D t+E\right)  \sin \left(\frac{1}{3} t\right)    D)    y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +A \cos \left(\frac{1}{3} t\right) +(B t+C)  \sin \left(\frac{1}{3} t\right)    E)    y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +\left(A t^{2}+B t+C\right)  \cos \left(\frac{1}{3} t\right) +\left(D t^{2}+E t+F\right)  \sin \left(\frac{1}{3} t\right)
and all capital letters are arbitrary real constants.


A) y(t) =C1cos(31t) +C2(31t) +Acos(31t) +(Bt+C) sin(31t) y(t) =C_{1} \cos \left(\frac{3}{1} t\right) +C_{2}\left(\frac{3}{1} t\right) +A \cos \left(\frac{3}{1} t\right) +(B t+C) \sin \left(\frac{3}{1} t\right)
B) y(t) =C1cos(31t) +C2(31t) +(At+B) cos(31t) +(Ct2+Dt+E) sin(31t) y(t) =C_{1} \cos \left(\frac{3}{1} t\right) +C_{2}\left(\frac{3}{1} t\right) +(A t+B) \cos \left(\frac{3}{1} t\right) +\left(C t^{2}+D t+E\right) \sin \left(\frac{3}{1} t\right)
C) y(t) =C1cos(13t) +C2sin(13t) +(At+B) cos(13t) +(Bt2+Dt+E) sin(13t) y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +(A t+B) \cos \left(\frac{1}{3} t\right) +\left(B t^{2}+D t+E\right) \sin \left(\frac{1}{3} t\right)
D) y(t) =C1cos(13t) +C2sin(13t) +Acos(13t) +(Bt+C) sin(13t) y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +A \cos \left(\frac{1}{3} t\right) +(B t+C) \sin \left(\frac{1}{3} t\right)
E) y(t) =C1cos(13t) +C2sin(13t) +(At2+Bt+C) cos(13t) +(Dt2+Et+F) sin(13t) y(t) =C_{1} \cos \left(\frac{1}{3} t\right) +C_{2} \sin \left(\frac{1}{3} t\right) +\left(A t^{2}+B t+C\right) \cos \left(\frac{1}{3} t\right) +\left(D t^{2}+E t+F\right) \sin \left(\frac{1}{3} t\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions