menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Introductory Algebra
  4. Exam
    Exam 4: Polynomials: Operations
  5. Question
    Solve the Problem\(x^{2}+3 x\) B)\(x^{2}+3 x+1\) C)\(4 x^{2}\) D)\(4 \mathrm{x}\)
Solved

Solve the Problem x2+3xx^{2}+3 xx2+3x B) x2+3x+1x^{2}+3 x+1x2+3x+1 C) 4x24 x^{2}4x2 D) 4x4 \mathrm{x}4x

Question 249

Question 249

Multiple Choice

Solve the problem.
-Find a polynomial for the sum of the areas of these rectangles.
 Solve the problem. -Find a polynomial for the sum of the areas of these rectangles.   A)   x^{2}+3 x  B)   x^{2}+3 x+1  C)   4 x^{2}  D)   4 \mathrm{x}


A) x2+3xx^{2}+3 xx2+3x
B) x2+3x+1x^{2}+3 x+1x2+3x+1
C) 4x24 x^{2}4x2
D) 4x4 \mathrm{x}4x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q244: Perform the division.<br>- <span class="ql-formula" data-value="\frac{x^{4}+3

Q245: What is the meaning of the

Q246: Solve the problem.<br>-Find a polynomial for

Q247: Multiply.<br>- <span class="ql-formula" data-value="\left(x^{6}+6\right)\left(x^{6}-6\right)"><span class="katex"><span class="katex-mathml"><math

Q248: Divide and simplify.<br>- <span class="ql-formula" data-value="\frac{y^{-12}}{y^{2}}"><span

Q250: Write the word or phrase that

Q251: Multiply and simplify.<br>- <span class="ql-formula" data-value="3^{4}

Q252: Multiply.<br>- <span class="ql-formula" data-value="(3 x-4)(x-2)"><span class="katex"><span

Q253: Solve the problem.<br>-The distance <span

Q254: Multiply.<br>- <span class="ql-formula" data-value="\left(-5 m^{2}+m+7\right)(-5 m+2)"><span

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines