Multiple Choice
Solve the problem.
-An object's altitude, in meters, is given by the polynomial , where is the height in meters from which the launch occurs, is the initial upward speed in meters per second, and is the number of seconds for which the rocket is airborne. A pebble is shot upward from the top of a building 191 meters tall. If the initial speed is 35 meters per second, how high above the ground will the pebble be after 2 seconds? Round results to the nearest tenth of a meter.
A) 397.4 meters
B) 280.6 meters
C) 251.2 meters
D) 241.4 meters
Correct Answer:

Verified
Correct Answer:
Verified
Q302: Multiply.<br>- <span class="ql-formula" data-value="(p+11 q)(p-11 q)"><span
Q303: Convert to decimal notation.<br>- <span class="ql-formula"
Q304: Multiply.<br>- <span class="ql-formula" data-value="\left(7.1-\mathrm{x}^{12}\right)\left(7.1+\mathrm{x}^{12}\right)"><span class="katex"><span class="katex-mathml"><math
Q305: Multiply.<br>- <span class="ql-formula" data-value="\left(2 x+\frac{3}{5}\right)\left(2 x-\frac{3}{5}\right)"><span
Q306: Collect like terms.<br>- <span class="ql-formula" data-value="7
Q308: Multiply.<br>- <span class="ql-formula" data-value="(x+y-4)(x+y+4)"><span class="katex"><span class="katex-mathml"><math
Q309: Divide.<br>- <span class="ql-formula" data-value="\frac{2 x^{4}-9 x^{3}-2
Q310: Multiply.<br>- <span class="ql-formula" data-value="(\mathrm{x}-11)(\mathrm{x}-3)"><span class="katex"><span class="katex-mathml"><math
Q311: Divide and simplify.<br>- <span class="ql-formula" data-value="\frac{t^{5}}{t^{9}}"><span
Q312: Solve the problem.<br>-Find a polynomial for