Multiple Choice
Classify the absolute value inequality as
· Having a single interval containing its solutions, but not the entire set of real numbers
· Having the union of two disjoint intervals containing its solutions
· Being a contradiction with no solution
· Being an identity with the set of all real numbers as its solution set
-
A) identity
B) union of two intervals
C) single interval
D) contradiction
Correct Answer:

Verified
Correct Answer:
Verified
Q129: <span class="ql-formula" data-value="|\mathrm{x}|+9=15"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi
Q130: <span class="ql-formula" data-value="\frac{7 n}{4}=\frac{5 n+2}{7}"><span class="katex"><span class="katex-mathml"><math
Q131: <span class="ql-formula" data-value="7 \mathrm{~m}-10=3+9 \mathrm{~m}"><span class="katex"><span class="katex-mathml"><math
Q132: Solve the inequality. Graph your solution
Q133: Write the inequality in interval notation<br>-
Q135: Graph the solution on a number
Q136: Simplify, where possible<br>- <span class="ql-formula" data-value="-3(5
Q137: <span class="ql-formula" data-value="3 y+9=1-2 y"><span class="katex"><span class="katex-mathml"><math
Q138: <span class="ql-formula" data-value="\frac{n+9}{4}=\frac{n+3}{3}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>n</mi><mo>+</mo><mn>9</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>3</mn></mrow><mn>3</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{n+9}{4}=\frac{n+3}{3}</annotation></semantics></math></span><span
Q139: <span class="ql-formula" data-value="9 x-(5 x-1)=2"><span class="katex"><span class="katex-mathml"><math